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ABSTRACT 

The Pd Spectral Toolkit, a set of Pure Data objects for 
spectral signal processing in OS X, is described and 
illustrated with example patches.  These objects 
facilitate spectral signal processing by providing 
commonly used data manipulations, conversions, and 
utilities that users must implement from scratch when 
working with spectral data.  Additional objects are 
provided to achieve novel methods of spectral data 
manipulation, allowing more advanced spectral 
algorithms to be expressed while requiring fewer objects 
within a Pure Data patch.  A comprehensive list of 
objects is included, and a web address to download the 
toolkit, its source code, and an IDE project containing 
the objects is provided.  

1. DESCRIPTION 

The Pd Spectral Toolkit is a set of 80 objects for the 
Pure Data real-time music and multimedia environment 
(Pd) [13].  The toolkit was developed to facilitate 
spectral signal processing within Pd by providing a set 
of objects that perform frequently used data 
transformations and calculations.  While some of these 
transformations and calculations may be implemented 
with standard Pd objects, doing so requires users to 
spend considerable time constructing lower-level 
boilerplate algorithms by combining dozens of objects.  
Consequently, composers and audio engineers using Pd 
to perform spectral data manipulation are encumbered 
with implementation, and can quickly get lost 
constructing complex patches that perform relatively 
simple spectral transformations. 

The Spectral Toolkit provides access to a larger 
number of data manipulation techniques than currently 
available with standard Pd objects, and affords more 
concise expression of spectral algorithms within the Pd 
patching language. By incorporating many lower-level 
boilerplate operations into individual objects, composers 
and engineers may spend less time managing lower-
level data bookkeeping, and more time implementing 
complex spectral algorithms, resulting in easier access 
to advanced spectral techniques and simpler patches.  In 
addition to spectral signal processing objects, the toolkit 
also contains a few abstractions for spectral data 
visualization, and a set of utility objects that are useful 
in non-spectral contexts. 

These objects are pedagogically useful and serve to 
help teachers demonstrate spectral data processing by 
making algorithms easier to understand, and making 
implementation and exploration of these algorithms 

simpler for students.  Additionally, the source code of 
the Pd Spectral Toolkit is available and provides 
numerous examples of how to use the Pd external object 
application programming interface, as well as insight 
into spectral signal processing in the C programming 
language. 

2. OBJECT CATEGORIES 

The objects may be broadly categorized into several 
groups based on their intended uses.  The spectral 
category includes objects that manipulate spectral data 
and act as building blocks for more complicated spectral 
algorithms.  The conversion category includes objects 
that translate spectral data into various formats, as well 
as objects that perform simpler translations between 
acoustic units.  The operator category includes objects 
that perform complex arithmetic and several other 
operations.  The comparison category includes objects 
that perform logical comparisons between signal values.  
Finally, the miscellaneous category includes objects that 
do not fit anywhere else.  The objects in these categories 
are listed in section 4, and further documentation, 
including object downloads, help diagrams, source code, 
and an IDE project may be found online at 
http://www.cooperbaker.com/pd-spectral-toolkit. 

3. EXAMPLES 

Several example patches are included with the Pd 
Spectral Toolkit in order to show its objects at work.  
Most of these examples comprise familiar spectral 
algorithms and show how the objects can simplify 
spectral processing within Pd.  Four examples are 
shown here to demonstrate how the objects can simplify 
spectral patches. 

3.1. Spectral Morph 

The first example illustrates a spectral morph algorithm 
[19] in which the spectra of two input sources are 
morphed together to create one output spectrum.  The 
winfft~ object performs a windowed fast fourier 
transform (FFT) on an input audio signal, creating 
cartesian coordinate pairs which are then converted to 
polar coordinate pairs by the cartopolar~ objects.  To 
achieve morphing, the magnitudes of these pairs are 
multiplied and the phases are added, resulting in a new 
set of polar coordinate pairs.  The new polar coordinates 
are converted back to cartesian coordinates by the 
polartocar~ object and finally transformed into an audio 
signal by the winifft~ object, which performs a 
normalized inverse windowed FFT. 



  
 

 

The windowing_scheme subpatch includes the windower 
object, which fills a table with various window 
functions, and other standard Pd objects to generate 
messages for  the block~ object.   Please see figure 1 for 
the patch containing these objects. 

 

 
 

Figure 1: Spectral Morph 

3.2. Oscillator Bank Resynthesis and Pitch Shift 

Example Two illustrates a simple oscillator bank 
resynthesis algorithm implemented with objects from 
the toolkit.  The input signal is transformed into 
cartesian coordinate pairs by the pafft~ object, which 
performs a windowed, phase-aligned FFT.  Within 
pafft~, phase-alignment is performed by rotating the 
time-domain signal of each analysis frame prior to 
transformation, thereby mitigating phase offsets 
introduced by overlapped FFT analysis.  The cartesian 
pairs are converted to magnitude and instantaneous 
frequency pairs by cartofreq~, then frequency values are 
scaled by a factor of two to achieve an upward pitch 
shift of one octave.  The magnitude and frequency pairs 
are interpreted by oscbank~, which transforms them 
back into an audio signal by rendering waveforms from 
its bank of oscillators.  Again, the windowing_scheme 
subpatch contains the windower object and function 
table, as well as objects that configure block~ and other 
objects that calculate the overlap factor and control 
phase-alignment within pafft~.  Figure 2 shows these 
objects in a patch. 

 

 
 

Figure 2: Oscillator Bank Resynthesis 

3.3. Classic Phase Vocoder 

Example Three illustrates toolkit objects implementing a 
classic phase vocoder algorithm [4] that time stretches a 
sample by a factor of four.  The pafft~ performs a 
windowed, phase-aligned FFT on audio signals emitted 
from the play_sample subpatch, resulting in cartesian 
coordinate pairs.  These pairs are converted to polar 
coordinate pairs by the cartopolar~ object, then their 
phase values undergo several manipulations to create 
smooth changes between successive spectral frames.  
First, the phasedelta~ object computes phase deviations; 
next, piwrap~ wraps phases between –π and π; third, 
phase is scaled by a factor of four; finally, phaseaccum~ 
accumulates phases to maintain smooth transitions.  
After these manipulations, the new polar coordinate 
pairs are converted back to cartesian pairs by paifft~ 
which performs a normalized windowed inverse FFT, 
resulting in a time-stretched output signal.  Similar to 
previous examples, the windowing_scheme subpatch 
generates and contains the window function, controls 
the block~ object, and manages signal rotation for pafft~ 
and paifft~, while also calculating sample_hop_size for 
the play_sample subpatch.  These objects are shown 
working together in figure 3. 

 



  
 

 

 
 

Figure 3: Classic Phase Vocoder 

3.4. GEM Waterfall Display 

Example Four shows a realtime 3D scrolling waterfall 
display created with spectral toolkit objects and GEM.  
Spectral data is stored in an array used by GEM to draw 
a moving, topological, colorized surface, that represents 
changing spectral amplitude envelopes.  The display 
may be rotated and zoomed to aid visualization and 
inspection of spectral data.  In addition to the waterfall 
display, a simpler realtime 2D scrolling colorized 
sonogram patch is also available for data visualization. 

 

 
 

Figure 4: GEM Waterfall Display 

4. OBJECT LIST 

4.1. Spectral Objects 

binindex~ binmax~ binmin~ binmix~ binmonitor~ 
binsort~ bintrim~ blocksmooth~ freqsieve~ fundfreq~ 
harmprod~ magtrim~ oscbank~ pafft~ paifft~ partconv~ 
peaks~ phaseaccum~ phasedelta~ piwrap~ rotate~ 
valleys~ windower winfft~ winifft~ 

4.2. Conversion Objects 

amptodb~ amptomag~ cartoamp~ cartodb~ cartofreq~ 
cartomag~ cartophase~ cartopolar~ ctltosig~ dbtoamp~ 
dbtomag~ degtorad~ degtoturn~ freqtocar~ 
freqtophase~ freqtopolar~ magtoamp~ magtodb~ 
phasetofreq~ polartocar~ polartofreq~ radtodeg~ 
radtoturn~ sigtoctl~ turntodeg~ turntorad~ 

4.3. Operator Objects 

!~ %~ cmplxabs~ cmplxadd~ cmplxdiv~ cmplxmult~ 
cmplxsqrt~ cmplxsub~ recip~ rounder~ trunc~ 

4.4. Comparison Objects 

!&&~ !=~ !||~ &&~ <=~ <~ ==~ >=~ >~ ||~ 

4.5. Miscellaneous Objects 

bitsafe~ countwrap dspbang~ monitor~ rgbtable scale~ 
softclip~ tabindex~ terminal 

5. FURTHER WORK 

These objects provide a solid foundation for building 
spectral signal processing patches in Pd.  However, to 
make this collection of objects even more robust, objects 
for spectral peak tracking could be implemented to give 
users more control over resynthesis.  Cepstral techniques 
are not yet implemented and would provide access to 
new algorithms for data manipulation.  Additional 
operator and conversion objects would serve to further 
simplify expression of spectral algorithms in Pd patches, 
and classic spectral algorithms, such as phase vocoding, 
could be implemented in their own discrete objects. 
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