

PD SPECTRAL TOOLKIT

Cooper Baker Tom Erbe
Department of Music

University of California San Diego
9500 Gilman Dr. MC 0099
La Jolla, CA 92093-0099

Department of Music
University of California San Diego

9500 Gilman Dr. MC 0099
La Jolla, CA 92093-0099

ABSTRACT

The Pd Spectral Toolkit, a set of Pure Data objects for
spectral signal processing in OS X, is described and
illustrated with example patches. These objects
facilitate spectral signal processing by providing
commonly used data manipulations, conversions, and
utilities that users must implement from scratch when
working with spectral data. Additional objects are
provided to achieve novel methods of spectral data
manipulation, allowing more advanced spectral
algorithms to be expressed while requiring fewer objects
within a Pure Data patch. A comprehensive list of
objects is included, and a web address to download the
toolkit, its source code, and an IDE project containing
the objects is provided.

1. DESCRIPTION

The Pd Spectral Toolkit is a set of 80 objects for the
Pure Data real-time music and multimedia environment
(Pd) [13]. The toolkit was developed to facilitate
spectral signal processing within Pd by providing a set
of objects that perform frequently used data
transformations and calculations. While some of these
transformations and calculations may be implemented
with standard Pd objects, doing so requires users to
spend considerable time constructing lower-level
boilerplate algorithms by combining dozens of objects.
Consequently, composers and audio engineers using Pd
to perform spectral data manipulation are encumbered
with implementation, and can quickly get lost
constructing complex patches that perform relatively
simple spectral transformations.

The Spectral Toolkit provides access to a larger
number of data manipulation techniques than currently
available with standard Pd objects, and affords more
concise expression of spectral algorithms within the Pd
patching language. By incorporating many lower-level
boilerplate operations into individual objects, composers
and engineers may spend less time managing lower-
level data bookkeeping, and more time implementing
complex spectral algorithms, resulting in easier access
to advanced spectral techniques and simpler patches. In
addition to spectral signal processing objects, the toolkit
also contains a few abstractions for spectral data
visualization, and a set of utility objects that are useful
in non-spectral contexts.

These objects are pedagogically useful and serve to
help teachers demonstrate spectral data processing by
making algorithms easier to understand, and making
implementation and exploration of these algorithms

simpler for students. Additionally, the source code of
the Pd Spectral Toolkit is available and provides
numerous examples of how to use the Pd external object
application programming interface, as well as insight
into spectral signal processing in the C programming
language.

2. OBJECT CATEGORIES

The objects may be broadly categorized into several
groups based on their intended uses. The spectral
category includes objects that manipulate spectral data
and act as building blocks for more complicated spectral
algorithms. The conversion category includes objects
that translate spectral data into various formats, as well
as objects that perform simpler translations between
acoustic units. The operator category includes objects
that perform complex arithmetic and several other
operations. The comparison category includes objects
that perform logical comparisons between signal values.
Finally, the miscellaneous category includes objects that
do not fit anywhere else. The objects in these categories
are listed in section 4, and further documentation,
including object downloads, help diagrams, source code,
and an IDE project may be found online at
http://www.cooperbaker.com/pd-spectral-toolkit.

3. EXAMPLES

Several example patches are included with the Pd
Spectral Toolkit in order to show its objects at work.
Most of these examples comprise familiar spectral
algorithms and show how the objects can simplify
spectral processing within Pd. Four examples are
shown here to demonstrate how the objects can simplify
spectral patches.

3.1. Spectral Morph

The first example illustrates a spectral morph algorithm
[19] in which the spectra of two input sources are
morphed together to create one output spectrum. The
winfft~ object performs a windowed fast fourier
transform (FFT) on an input audio signal, creating
cartesian coordinate pairs which are then converted to
polar coordinate pairs by the cartopolar~ objects. To
achieve morphing, the magnitudes of these pairs are
multiplied and the phases are added, resulting in a new
set of polar coordinate pairs. The new polar coordinates
are converted back to cartesian coordinates by the
polartocar~ object and finally transformed into an audio
signal by the winifft~ object, which performs a
normalized inverse windowed FFT.

The windowing_scheme subpatch includes the windower
object, which fills a table with various window
functions, and other standard Pd objects to generate
messages for the block~ object. Please see figure 1 for
the patch containing these objects.

Figure 1: Spectral Morph

3.2. Oscillator Bank Resynthesis and Pitch Shift

Example Two illustrates a simple oscillator bank
resynthesis algorithm implemented with objects from
the toolkit. The input signal is transformed into
cartesian coordinate pairs by the pafft~ object, which
performs a windowed, phase-aligned FFT. Within
pafft~, phase-alignment is performed by rotating the
time-domain signal of each analysis frame prior to
transformation, thereby mitigating phase offsets
introduced by overlapped FFT analysis. The cartesian
pairs are converted to magnitude and instantaneous
frequency pairs by cartofreq~, then frequency values are
scaled by a factor of two to achieve an upward pitch
shift of one octave. The magnitude and frequency pairs
are interpreted by oscbank~, which transforms them
back into an audio signal by rendering waveforms from
its bank of oscillators. Again, the windowing_scheme
subpatch contains the windower object and function
table, as well as objects that configure block~ and other
objects that calculate the overlap factor and control
phase-alignment within pafft~. Figure 2 shows these
objects in a patch.

Figure 2: Oscillator Bank Resynthesis

3.3. Classic Phase Vocoder

Example Three illustrates toolkit objects implementing a
classic phase vocoder algorithm [4] that time stretches a
sample by a factor of four. The pafft~ performs a
windowed, phase-aligned FFT on audio signals emitted
from the play_sample subpatch, resulting in cartesian
coordinate pairs. These pairs are converted to polar
coordinate pairs by the cartopolar~ object, then their
phase values undergo several manipulations to create
smooth changes between successive spectral frames.
First, the phasedelta~ object computes phase deviations;
next, piwrap~ wraps phases between –π and π; third,
phase is scaled by a factor of four; finally, phaseaccum~
accumulates phases to maintain smooth transitions.
After these manipulations, the new polar coordinate
pairs are converted back to cartesian pairs by paifft~
which performs a normalized windowed inverse FFT,
resulting in a time-stretched output signal. Similar to
previous examples, the windowing_scheme subpatch
generates and contains the window function, controls
the block~ object, and manages signal rotation for pafft~
and paifft~, while also calculating sample_hop_size for
the play_sample subpatch. These objects are shown
working together in figure 3.

Figure 3: Classic Phase Vocoder

3.4. GEM Waterfall Display

Example Four shows a realtime 3D scrolling waterfall
display created with spectral toolkit objects and GEM.
Spectral data is stored in an array used by GEM to draw
a moving, topological, colorized surface, that represents
changing spectral amplitude envelopes. The display
may be rotated and zoomed to aid visualization and
inspection of spectral data. In addition to the waterfall
display, a simpler realtime 2D scrolling colorized
sonogram patch is also available for data visualization.

Figure 4: GEM Waterfall Display

4. OBJECT LIST

4.1. Spectral Objects

binindex~ binmax~ binmin~ binmix~ binmonitor~
binsort~ bintrim~ blocksmooth~ freqsieve~ fundfreq~
harmprod~ magtrim~ oscbank~ pafft~ paifft~ partconv~
peaks~ phaseaccum~ phasedelta~ piwrap~ rotate~
valleys~ windower winfft~ winifft~

4.2. Conversion Objects

amptodb~ amptomag~ cartoamp~ cartodb~ cartofreq~
cartomag~ cartophase~ cartopolar~ ctltosig~ dbtoamp~
dbtomag~ degtorad~ degtoturn~ freqtocar~
freqtophase~ freqtopolar~ magtoamp~ magtodb~
phasetofreq~ polartocar~ polartofreq~ radtodeg~
radtoturn~ sigtoctl~ turntodeg~ turntorad~

4.3. Operator Objects

!~ %~ cmplxabs~ cmplxadd~ cmplxdiv~ cmplxmult~
cmplxsqrt~ cmplxsub~ recip~ rounder~ trunc~

4.4. Comparison Objects

!&&~ !=~ !||~ &&~ <=~ <~ ==~ >=~ >~ ||~

4.5. Miscellaneous Objects

bitsafe~ countwrap dspbang~ monitor~ rgbtable scale~
softclip~ tabindex~ terminal

5. FURTHER WORK

These objects provide a solid foundation for building
spectral signal processing patches in Pd. However, to
make this collection of objects even more robust, objects
for spectral peak tracking could be implemented to give
users more control over resynthesis. Cepstral techniques
are not yet implemented and would provide access to
new algorithms for data manipulation. Additional
operator and conversion objects would serve to further
simplify expression of spectral algorithms in Pd patches,
and classic spectral algorithms, such as phase vocoding,
could be implemented in their own discrete objects.

6. ACKNOWLEDGEMENTS

Development of the Pd Spectral Toolkit was funded by
a Committee on Research grant provided by the
University of California San Diego during the 2012 –
2013 school year. The toolkit was created by Cooper
Baker under the direction of Tom Erbe. Miller Puckette
provided insight into the Pd application programming
interface as well as invaluable advice about spectral
math and spectral signal processing algorithms.

7. REFERENCES

[1] Bracewell, R., The Fourier Transform and its
Applications, Third Edition, McGraw Hill, 2000.

[2] De La Cuadra, P., Master, A., Sapp, C., “Efficient
Pitch Detection Techniques for Interactive Music”,
Proceedings of the International Computer Music
Conference, La Habana, Cuba, 2001.

[3] De Poli, G., Piccialli, A., Roads, C., Representations
of Musical Signals, The MIT Press, 1991.

[4] Dolson, M., “The Phase Vocoder: A Tutorial”,
Computer Music Journal, Vol. 10, No. 4, 1986.

[5] Flanagan, J. L., Golden, R. M., “Phase Vocoder”,
The Bell System Technical Journal, 1966.

[6] Jaffe, D. A., “Spectrum Analysis Tutorial, Part 2:
Properties and Applications of the Discrete Fourier
Transform”, Computer Music Journal, Vol. 11, No.
3, 1987.

[7] Klingbeil, M. Spectral Analysis, Editing, and
Resynthesis: Methods and Applications, Columbia
University, 2009.

[8] Loy, G. Musimathics: The Mathematical
Foundations of Music, The MIT Press, 2006.

[9] Moore, F. R., Elements of Computer Music, PTR
Prentice Hall, 1990.

[10] Park, T. H., Introduction to Digital Signal
Processing: Computer Musically Speaking, World
Scientific Publishing Co. Pte. Ltd., 2010.

[11] Press, W., Teukolsky, S., Vetterling, W., Flannery,
B., Numerical Recipes: The Art of Scientific
Computing, Third Edition, Cambridge University
Press, 2007.

[12] Puckette, M., Pd Source Code,
http://crca.ucsd.edu/~msp/Software/pd-0.43-
3.src.tar.gz, 12/13/12.

[13] Puckette, M., Pure Data.
http://www.crca.ucsd.edu/~msp/software.html,
01/20/13.

[14] Puckette, M., The Theory and Technique of
Electronic Music, World Scientific Publishing Co.
Pte. Ltd., 2007.

[15] Roads, C., The Computer Music Tutorial, The MIT
Press, 1996.

[16] Serra, X. “Musical Sound Modeling with Sinusoids
plus Noise”, Musical Signal Processing, Swets &
Zeitlinger B. V., 1997.

[17] Steiglitz, K. A., A Digital Signal Processing Primer,
with Applications to Digital Audio and Computer
Music, Addison Wesley Publishing Company, Inc.,
1996.

[18] Strawn, J. Editor, Digital Audio Signal Processing:
An Anthology, William Kaufmann, Inc., 1985.

[19] Zölzer, U., Editor, DAFX – Digital Audio Effects.
John Wiley & Sons, Ltd., 2008.

[20] Zölzer, U. Digital Audio Signal Processing, Second
Edition, John Wiley & Sons, Ltd., 2008.

